
Equation for the Density of Particle-Reinforced Metal
Matrix Composites: A New Approach

S.C. Sharma

(Submitted 27 December 2002; in revised form 21 January 2003)

This paper presents a novel equation for the density of ceramic particle reinforced metal matrix compos-
ites. An overall density change occurs in composites due to the thermal mismatch between the metal matrix
and the reinforcement. The thermal mismatch occurs because the coefficient of thermal expansion and the
elastic properties are different for the matrix and the reinforcement. The values obtained using the
proposed equation for density were compared with both the rule of mixtures for density and the experi-
mental values obtained for aluminium and zinc alloy composites. The composite specimens were fabricated
using compocasting technique (one of the types of liquid metallurgy route). The proposed mathematical
model is found have better agreement with the experimental results at lower volume fractions of the
reinforcement; however, some deviations were observed at higher volume fractions of the reinforcement.
The proposed equation yields agreeable results for aluminium composites and fairly agreeable results for
zinc alloy composites.
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1. Introduction

The demand for high strength and stiffness and low-density
materials has given considerable importance to the manufac-
turing aspects of particle reinforced metal matrix composites
(MMCs). MMCs are potential materials for technological ap-
plications because they exhibit higher stiffness,[1] lower ther-
mal expansion,[2] lower thermal conductivity,[3] better damping
properties,[4] and higher wear resistance[5] than conventional
alloys. MMCs are increasingly used in many engineering ap-
plications, in products such as automobile parts (i.e., piston
liners, clutches, pulleys, etc.), aircraft components, sports
goods, etc.[6]

As the composite materials are being increasingly consid-
ered for specific application, many researchers have studied
MMCs by different methods, such as shear-lag theory for elas-
tic constants,[7] finite element analysis for mechanical proper-
ties,[8,9] boundary element analysis,[10] mean-field theory,[11]

and rule of mixtures. Several theories like the ones mentioned
above have been proposed for explaining the various properties
of the MMCs. The physical, mechanical, chemical, and elec-
trical properties of MMCs are influenced by the thermome-
chanical properties of the matrix and the reinforcement. Some
researchers have also studied the effect of the coefficient of
thermal expansion (CTE) on the mechanical properties of the
composites.[12-14]

The existing rule of mixtures law for the density of the
MMCs, does not consider the mismatch in the CTE, and the

elastic constants between the matrix and the reinforcement,
which affect the density of the composites. Trojanova et al.
have pointed out that when MMCs are cooled, misfit strains
might set in if large differences exist between the thermal ex-
pansion coefficients of the matrix and the reinforcement.[15]

This strain induces thermal stresses that may create disloca-
tions and lead to an increase in the dislocation density. Budi-
ansky et al. neglected any shear effect and considered the case
in which the reinforced particles were allowed to undergo only
a volumetric strain, which leads to a higher density of matrix
alloy around the particles.[16] Some authors have also pointed
out the presence of the dislocation density of the matrix alloy
around the particles using traveling electron microscopy.[17-20]

In the present work, an attempt has been made to analyze
the effect of thermomechanical properties (CTE and elastic
constants) on the density of the MMCs. The objective is to
present an analytical model to predict the density of MMCs and
compare the values obtained by the proposed model both with
the rule of mixtures law and the experimental values obtained
for aluminium and zinc alloy composites fabricated by com-
pocasting.

2. Theoretical Analysis

The rule of mixtures for the density of MMCs considers
only the densities of the matrix and the reinforcement repre-
sented by the two concentric circles, as shown in the Fig. 1(a),
disregarding their CTE and elastic properties, leading to inac-
curate density predictions. Hence, the rule of mixtures holds
good only when the CTE and the elastic properties of the
matrix and the reinforcement are the same. Practically, both the
CTE and the Poisson’s ratio of the ceramic particle reinforce-
ment are much lower than that of any metal matrix. The matrix
tries to shrink more than that of the reinforcement during cool-
ing, which is actually hindered by the reinforcement, which
induces volumetric strain in the matrix as well as the reinforce-
ment. The conceptual understanding of this is shown in
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Fig. 1(b) as four concentric spheres, namely uncompressed
matrix, compressed matrix, uncompressed reinforcement, and
compressed reinforcement. The thickness of the layers corre-
sponding to the four concentric spheres depends upon the CTE
and the elastic constants of the reinforcement and the matrix.

The analytical approach is based on the following assump-
tions (they are similar to those used for the analysis of elastic
problems[21-24]:

1) The particles are spheres of uniform radius.
2) No void exists in the composite.
3) The matrix and the reinforcement particle exhibit perfectly

elastic behavior.
4) The temperature in the MMCs is uniform in all directions

(no thermal gradient).
5) The stress-strain behavior is independent of the strain rate

and the stress orientation.

The proposed model estimates density considering CTE and
elastic properties of both the matrix and the reinforcement. At
their melting temperatures, the metal and the reinforcement are
in stress free state. During solidification, the matrix metal tries
to shrink more than that of the ceramic particulate. Due to this
misfit shrink, volumetric strain occurs at the interface of the
particle and the matrix, as shown in Fig. 2.

The total mass of the composite mc is the sum of the masses
of the matrix mm and the reinforcement mr

[24]:

i.e., mc = mr + mm (Eq 1)

The volume of composite vc, however, should include the
volume of voids vv and the volume shrinkage due to thermal
mismatch �vsh. Thus,

vc = vr + vm + vv − �vsh, (Eq 2)

where vm, vr, and vv represent the volumes of the matrix, re-
inforcement, and voids, respectively.

In the absence of voids (as assumed above),

vc = vr + vm − �vsh (Eq 3)

The composite density �c is then given by

�c =
mc

vc
=

�mr + mm�

�vr + vm − �vsh)
(Eq 4)

�vsh can be resolved into two components, i.e., volume
shrinkages of the matrix (�vshm) and the particulate (�vshr):

�vsh = �vshm + �vshr (Eq 5)

The above equation can be rewritten as (by multiplying and
dividing by their volumes)

�vsh =
�vshm × vm

vm
+

�vshr × vr

vr
(Eq 6)

Substituting (volumetric strain, � ��v/v),

�vsh = �m vm + �r vr (Eq 7)

where �m and �r are the volumetric strains of the matrix and the
particulate, respectively. Assuming that the size of particulate
is very small and is spherical in shape � can be written as

� =
�r

B
(Eq 8)

where �r is the radial stress, which occurs at the interface
between the particle and the matrix due to the thermal mis-
match and B is the Bulk modulus. The Eq 7 can be rewritten as

�vsh =
�rm vm

Bm
+

�rr vr

Br
(Eq 9)

where Bm and Br are the bulk moduli of the matrix and the
reinforcement, and �rm and �rr the radial stress of the matrix
and the reinforcement.

The elastic stress (�r) components at the interface between
the matrix and reinforcement are equal and opposite to each
other, i.e.,

�rm = �rr = �r (Eq 10)

Substituting Eq 10 into Eq 9,

�vsh = �r � vm

Bm
+

vr

Br
� (Eq 11)

Fig. 1 (a) Two concentric circles representing the density of the
matrix and the reinforcement without considering thermal mismatch
and (b) four concentric circles representing the density of uncom-
pressed matrix, compressed matrix, uncompressed particulate, and
compressed particulate
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The general relation between the elastic modulus and the
bulk modulus is

B =
E

3�1 − 2��
(Eq 12)

where E and � are the Young’s modulus and Poisson’s ratio,
respectively.

Substituting Eq 12 into Eq 11,

�vsh = 2�r �vm 3 (1 − 2vm)
Em

+
vr 3 (1 − 2vr)

Er
� (Eq 13)

where Em and Er are the Young’s moduli of the matrix and the
reinforcement and �m and �r are Poisson’s ratio of the matrix
and the reinforcement.

Substituting Eq 13 into Eq 4, we get

�c =
�mr + mm�

vr + vm − 2�r �vm 3 �1 − 2 vm�

Em
+

vr 3 �1 − 2 vr�

Er
� (Eq 14)

The thermal residual stress (�r) occurs due to the mismatch
between the CTE of the two phases (matrix and reinforcement),
the magnitude of the thermal decrement (from cooling), and the
relative values of the elastic constant of both the reinforcement
and the matrix metal.

The mismatch stresses within the matrix can be calculated
using the Hooke’s law, in terms of the elastic strain and the
stiffness tensor of the material (Em)

�r = Em ��c − �T) (Eq 15)

where �c is the constrained strain and �T, the specific shape
change.

According to Eshelby[25]

�C = S �T (Eq 16)

S is the Eshelby tensor, which can be calculated in terms
of the reinforcement aspect ratio and Poisson’s ratio of the
material.

Substituting Eq 16 into Eq 15,

�r = Em (S − I��T (Eq 17)

where I is the identity matrix.
Considering the mismatch strain between reinforcement and

matrix,

�r = Er ��C − �T*) (Eq 18)

where �T* � (�m − �r) �T (thermal strain), �m, �r, and �T are
the CTE of the matrix, CTE of the reinforcement, and tem-
perature gradient, respectively.

The internal stresses in the equivalent reinforcement must
be identical. Therefore equating the right hand side of Eq 15
and 18,

EI ��T − �T*� = Em �S − I� �T (Eq 19)

Rearranging the terms,

�T = ��Er − Em� S + Em�−1 Er �T* (Eq 20)

Substituting Eq 20 into Eq 17,

�r = Em Er �S − I� ��m − �r� �T���Er − Em) S + Em�−1 (Eq 21)

Hence, substituting Eq 21 into Eq 14, we get the equation
for density of an MMC

Fig. 2 Volume shrinkage due to the thermal mismatch (difference in the CTE between the particle and the matrix metal) during cooling of the
molten metal
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�c =
�mr + mm�

vr + vm − 2 Em Er �S − I� ��m − �r�

�T���Er − Em� S + Em�−1 �vm 3 �1 − 2 vm�

Em
+

vr 3 �1 − 2vr�

Er
�

(Eq 22)

3. Experimental Procedure

3.1 Materials Selection

Al 6061 and ZA-27 alloys are used as matrix metal alloys.
Albite (grey in color), garnet (brown in color), and zircon (yel-
low in color) are naturally occurring plagioclase feldspar. Ba-
sically consisting of silicates (R-SiO2), they are abundantly
available in the earth’s crust. Quartz (milky white in color) is
natural silicon oxide. These ceramics are as used as reinforce-
ments. The chemical compositions and properties of matrix
metal alloys and reinforcements are presented in Table 1.

3.2 Composite Preparation

Albite/Al 6061, garnet/Al 6061, zircon/ZA 27, and quartz/
ZA 27 composites were considered for the study. The compo-
casting technique was used to prepare the composite speci-
mens.[26] In this process, the matrix alloy was first superheated
above its melting temperature, and stirring was initiated to
homogenize the temperature. The temperature was then low-
ered gradually until the alloy reached a semi-solid state. At this
temperature, the preheated ceramic particles of nominal size of
30-50 mm were introduced into the molten slurry. The melt
was then superheated above its liquidus temperature and finally
poured into the lower die-half of the press, and the top die was
brought down to solidify the composite by applying high pres-
sure of 25 MPa.

3.3 Volume Fraction Determination

Volume fraction of MMCs was determined using disin-
tegrated melt deposition process (chemical dissolution
method).[27] The weighed specimens were completely im-
mersed in 1 N hydrochloric acid to dissolve the metal alloy and

then filtered to separate the reinforcement particulate. The par-
ticulates were then dried and weighed to determine the volume
fraction of the MMCs using

Volume fraction =

Final weight of the reinforcement
× density of matrix

Initial weight of the composite
× density of reinforcement

3.4 Density Measurement

Machined and polished composite specimens (10 mm di-
ameter and 5 mm length, sample size 4) were considered for
density measurement using the Archimedian method at room
temperature (27 °C and relative humidity of 48%). The beaker
with water was initially kept on the electronic balance (accu-
racy 0.1 mg) set to read zero. The initially weighed, freely
suspended specimen (say, W1 mg) was fully immersed in the
beaker. The final weight (W2 mg) shown by the balance rep-
resents the volume of the displaced water (specific gravity of
water � 1) is equivalent to the volume of the specimen. The
ratio of W1 to W2 represents the density of the specimen.

4. Results and Discussion

4.1 Experimental Results

Figures 3 and 4 depict the density values obtained by (1)
rule of mixtures, (2) experimental results, and (3) proposed
model, for Al and ZA27 MMCs, respectively.

Figure 3(a) shows the density values of garnet/Al 6061
MMCs. The density of the composite increases with the vol-
ume fraction of the reinforcement due to the higher density of
garnet particulate.

Figure 3(b) shows the density values of albite/Al6061
MMCs. The density of the composite marginally decreases
with increase in volume fraction of the reinforcement due to the
lower density of the albite particulate.

Figure 4(a) and (b) show the density of quartz/ZA27 and
zircon/ZA27 MMCs. The density of the composite in both the

Table 1 Physical Properties of the Ceramic and the Metal Alloys

Materials Chemical Composition Density, g/cm2 Young’s Modulus, GPa Poisson’s Ratio CTE 10−6/°C

Albite SiO2Al2O3Na2O3 2.6 75 0.27 2.03
Garnet Ca2Fe2(SiO4)3 3.1 80 0.14 2.05
Quartz SiO2 2.65 96 0.27 1.37
Zircon ZrO2 SiO2 4.5 220 0.26 2.02
Al6061 Mg-0.92, Si-0.76, Ti-0.1, Zn-0.06,

Be-0.003, Fe-0.28, Cu-0.22,
Cr-0.07, Mn-0.04, v-0.01,
Al-Balance, all in wt.%

2.7(a) 70 0.3 22.8

2.615(b)
ZA-27 Al-25-28, Mg-0.01-0.02, Cu-2-2.5,

Zinc-Balance, all in wt.%
5.1(a) 76 0.3 36

5.05(b)

(a) Standard data handbook
(b) Measured density value
CTE, coefficient of thermal expansion
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cases decreases with increase in the volume fraction of the
reinforcement, due to the lower density of the reinforcement.

4.2 Comparison of Experimental Values With Rule of
Mixtures and the Proposed Model

In Al6061/albite and Al6061/garnet MMCs, the experimen-
tal values of density show good agreement with that calculated
from the developed model. The experimental values are be-
tween the values derived from the proposed model and the rule
of mixtures. The density values obtained by using the newly
developed model are in good agreement with that of experi-
mental values for lower volume fractions, whereas some de-
viation is observed at higher volume fractions. In particulate-
reinforced composites, increasing the reinforcement volume
could also result in an increase in the porosity of the MMCs
due to the decrease in the inter-particle spacing.[28] Surface and
interface-porosity of the composites tend to decrease the den-
sity of the MMCs. This might cause the deviation in the pre-
dicted density values at higher volume fractions of the rein-
forcement.

The densities of ZA27/quartz and ZA-27/zirocn calculated
using the model are in agreement with the experimental results
but for small deviation. It may be due to the size of ceramic
particle, which exceeds the critical size as the crack extension

occurs along the brittle-matrix particle interface upon cooling.
Residual stresses generated during cooling to room temperature
can also cause crack extension at the brittle matrix/particle
interface.[28-31] Some authors have investigated the stress dis-
tributions created around and within hard particles, which leads
to the cracks in both the reinforcement and the matrix.[32] As a
result, radial cracks appear in the interfacial region along the
whole circumference of the interface.[33] Smith et al. have ob-
served radial cracking in the interfacial region of the
MMCs.[34] Under this condition, the model predicts higher den-
sity values than the experimental values.

4.3 Accuracy of the Proposed Model

The densities of the MMCs of different alloy compositions
have been evaluated using a proposed model and compared
with the experimental values. The percentage deviations have
been computed as shown in Table 2. It is evident from the
tabulated values that the percent of deviation various from
0.003 to 0.139, which demonstrates the accuracy of the model.

5. Conclusion

In the present investigation, an equation was derived for the
density of the MMCs taking into consideration the thermome-

Fig. 3 Comparison of the density (a) of an Al6061-garnet reinforced composite and (b) of an Al6061-albite reinforced composite
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chanical properties of both the matrix and the reinforcement.
The results were compared with the rule of mixtures for density
and experimental values. Based on this study, the following
conclusions are arrived at:

1) The developed model shows good agreement with experi-
mental density values.

2) The model predicts density better than the rule of mixtures.
3) In brittle-matrix composites, the experimental values

slightly deviated away from the proposed model.
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